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This paper presents analytical expressions for the calculation

of ratios of cation coordination polyhedra volumes (VA/VB)

for perovskites ABX3 of the Stokes–Howard diagram directly

from atomic coordinates. We show the advantages of

quantifying perovskite structure distortion with polyhedral

volume ratios rather than with tilting angles, and discuss why

space groups with multiple crystallographically inequivalent A

or B sites (I4/mmm, Immm, P42/nmc etc.) are much less

common than those with a single A and B site (I4/mcm, R�33c,

Pnma etc.). Analysis of crystallographic data for approxi-

mately 1300 perovskite structures of oxides, halides and

chalcogenides from the Inorganic Crystal Structure Database

revealed that the most highly distorted perovskites belong to

the space group Pnma and formally lower-symmetry perov-

skites (I2/m, I2/a) are less distorted geometrically. Critical

values of the VA/VB ratios for the most common phase

transitions Pnma$ I4/mcm and Pnma$ R�33c are estimated to

be � 4.85 with the possible intermediate space group Imma

stable in the very narrow range of VA/VB ’ 4.8–4.9.

Transitions to post-perovskite CaIrO3-type structures may

be expected for VA/VB < 3.8.
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1. Introduction

Perovskites are probably the most studied inorganic materials

owing to a variety of interesting physical properties that they

possess. According to the Web of Science search engine (ISI,

2006), since the early 1990s on average about 1200 papers on

the crystal and magnetic structure and properties of perovs-

kites are published each year by physicists, chemists, geoche-

mists, metallurgists, crystallographers and engineers.

With so much data accumulated throughout the years it is

intriguing to look for general trends in the crystallography and

crystal chemistry of perovskites. The Inorganic Crystal

Structure Database (ICSD; Belsky et al., 2002), containing a

few thousand entries for perovskite-type compositions, is the

best source of data for such an analysis.

The crucial first step was to identify a universal parameter

that would allow perovskites with different space groups to be

compared in a way that does not depend on the absolute

values of the unit-cell parameters. The following reasoning led

us to choose the polyhedral volume ratio (PVR) VA/VB, first

proposed by Thomas (Thomas & Beitollahi, 1994; Thomas,

1996, 1998), as a parameter which best suits our goals.

1.1. Symmetry considerations: necessary but insufficient

Group-theoretical analysis of phase transitions was first

applied to the perovskite structure type decades ago

(Barnighausen, 1975; Aleksandrov, 1976), but has been widely

recognized only after the recent work of Howard & Stokes



(1998) summarized in Fig. 1. Application of this powerful tool

resulted in the revision of crystal structure evolution in a

number of perovskites and it will definitely help experi-

mentalists in correct space-group assignments in future.

However, as Cotton remarks in his book ‘Chemical Applica-

tion of Group Theory’: “...symmetry considerations alone can

give us a complete and rigorous answer to the question ‘What

is possible and what is completely impossible?’. Symmetry

considerations alone cannot, however, tell us how likely it is

that the possible things will actually take place” (Cotton, 1990,

p. 4). Obviously, for practical purposes a bridge from the

symmetry approach to structural characteristics is needed and

for perovskites such a connection can be established via the

geometric consideration of deviations from the ideal

arrangement of ideal octahedra and cuboctahedra of the cubic

aristotype. At present, these are frequently discussed in terms

of tilting angles.

1.2. Tilting angles: Convenience at the price of generality

The tilting angles of BX6 octahedra are widely used for both

the classification of distorted perovskites (Glazer, 1972, 1975)

and as a quantitative measure of perovskite structure distor-

tion. The latter was first applied to rhombohedrally distorted

perovskites (Michel et al., 1971; Megaw, 1973) and then was

extended to tetragonal and orthorhombic perovskites

(Mitchell, 2002). Indeed, tilting angles are convenient for

intercomparison of perovskites within the same tilt system or as

order parameters for phase transitions, as zeroing of one or

more tilting angles corresponds to the phase transition to a

higher symmetry. However, we saw the following obstacles to

using tilting angles as a universal parameter easily applicable

to all known distorted perovskites ABX3:

The geometry of distorted perovskites ABX3 was explored

chronologically before and/or without connection with group-

theoretical analysis of phase transitions in perovskites; no

attempt to develop a unified approach to using tilting angles

across different tilting systems has been made. Tetragonal,

rhombohedral and orthorhombic perovskite structures are

traditionally discussed in the literature in terms of the rotation

of BX6 octahedra around different directions of the aristotype

cubic cell, i.e. [001]p, [111]p, and a combination of [001]p and

[110]p, respectively. This approach complicates the presenta-

tion of phase transitions such as R�33c$ Pnma, R�33c$ Imma

etc. In Fig. 2 we illustrate how mixing different types of tilting

angles in phase diagrams may give the misleading impression

that some drastic changes occur with the structure during the

phase transition, while in fact distortion increases gradually.

To the best of our knowledge simple formulae for esti-

mating tilting angles using cell parameters or atomic coordi-

nates were reported for only about half of the space groups of

the Howard–Stokes diagram, i.e. for tetragonal, orthorhombic

and rhombohedral ones (Mitchell, 2002). For space groups of

lower symmetry the definition of the tilting angle itself is less

clear as octahedra may be significantly deformed. For

example, in monoclinic Ca(Sb0.2Mn0.8)O3 perovskite (space

group P21/m, ICSD #99429; Poltavets et al., 2004), the Oapical—

(Sb,Mn)—Oequatorial angle is � 80.3�. In order to use the angle

of rotation of such an octahedron around some crystal-

lographic directions one would first need to clarify whether

the rotation of the M—Oapical bond or of the equatorial plane

of the octahedron is considered, or some averaging scheme

would have to be used.

1.3. Polyhedral volume ratios

Both tilting angles around any axis and deformation of A-

and B-site polyhedra may be convoluted to a single parameter,

i.e. the ratio of cation coordination polyhedra volumes VA/VB

that was proposed for the quantitative description of perov-

skite structures by Thomas (Thomas & Beitollahi, 1994;
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Figure 2
Tilting angles (circles, triangles and squares) from Fu & Ijdo (2006) and
polyhedral volume ratios (stars) calculated using formulae from Table 1
as a function of temperature for CeAlO3.

Figure 1
Howard–Stokes diagram for disordered ABX3 perovskites (reproduced
from Howard & Stokes, 2002). Solid and dashed lines indicate phase
transitions of second and first order, respectively.
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Table 1
Polyhedral volume ratios for ABX3 perovskites in terms of atomic coordinates.

Glazer
tilt
system

Space group
(Wyckoff
sequence) Unit cell

Atomic
positions Polyhedral volume ratios

a0a0a0 #2 Pm3m
(dba)

a = b = c �
ap

A: 1(b) 1
2,

1
2,

1
2

VA

VB

¼ 5

B: 1(a) 0,0,0
X: 3(d) 1

2,0,0
a0a0c� #140

I4/mcm
(hcba)

a = b ’
21/2ap

A: 4(b) 0,12,
1
4

VA

VB

¼
3

1� 4xðX2Þ þ 8xðX2Þ2
� 1

c ’ 2ap B: 4(c) 0,0,0
X1: 4(a)

0,0,14
X2: 8(h)

x; xþ 1
2,

0; x ’ 1
4

a0a0c+ #127
P4/mbm
(gcba)

a = b ’
21/2ap

A: 2(c) 0,12,
1
2

VA

VB

¼
3

1� 4xðX2Þ þ 8xðX2Þ2
� 1

c ’ ap B: 2(a) 0,0,0
X1: 2(b)

0,0,12
X2: 4(g)

x; xþ 1
2,0;

x ’ 1
4

a0b�b� #74 Imma
(ge2a)

a ’ c ’
21/2ap

A: 4(e)
0; 1

4 ; z;
z ’ 1

2

VA

VB

¼
6

1� 16yðX2ÞzðX1Þ
� 1

b ’ 2ap B: 4(a) 0,0,0
X1: 4(e)

0; 1
4 ; z;

z ’ 0
X2: 8(g):

1
4 ; y; 1

4;
y ’ 0

(ge2b) a ’ c ’
21/2ap

A: 4(e)
0; 1

4 ; z;
z ’ 0

VA

VB

¼
6

1þ 8yðX2Þð1� 2zðX1ÞÞ
� 1

b ’ 2ap B: 4(b) 0,0,12
X1: 4(e)

0; 1
4 ; z;

z ’ 1
2

X2: 8(g):
1
4 ; y; 3

4;
y ’ 0

a0b�c� #12 I2/m
(i2hge)

a ’ c ’
21/2ap

A: 4(i)
x; 0; z;
x ’ 1

4,
z ’ 3

4

VA

VB

¼
3

2j2zðX1ÞðyðX2Þ � yðX3ÞÞ þ 2xðX1ÞðyðX2Þ þ yðX3ÞÞ � yðX2Þ � xðX1Þj
� 1

b ’ 2ap B: 4(e)
1
4 ;

1
4 ;

1
4

� ’ 90� X1: 4(i)
x; 0; z;
x ’ z ’ 1

4

X2: 4(g)
0; y; 0;
y ’ 1

4

X3: 4(h)
1
2 ; y; 0;
y ’ 1

4

a0b+c� #63 Cmcm
(gfedc2)

a ’ b ’ c ’
2ap

A1: 4(c)
0; y; 1

4;
y ’ 0

VA1

VB

¼ 2

2zðX2Þ yðX2Þ 1� 4xðX3Þð ÞþxðX1Þ 1� 4yðX3Þð Þð Þ

þyðX2Þ þ 2xðX1ÞyðX2Þ þ xðX1Þ

� �

1� 4xðX1Þð Þ yðX2Þ � 4zðX2ÞyðX3Þð Þ

þxðX1Þ � 4xðX1ÞzðX2Þ þ 4zðX2ÞxðX3Þ

� �

VA2

VB

¼ �

4zðX2Þ xðX1Þ 1� 4yðX3Þð Þ�yðX2Þ 1� 4xðX3Þð Þþ2 yðX3Þ � xðX3Þð Þð Þ

þ4 xðX1ÞyðX2Þ � xðX1Þ � yðX2Þð Þþ3

� �

xðX1Þ þ 4zðX2Þ xðX3Þ � xðX1Þð Þþ 1� 4xðX1Þð Þ yðX2Þ � 4zðX2ÞyðX3Þð Þ

VA

� �
=VB ¼

3

2
xðX1Þ þ 4zðX2Þ xðX3Þ � xðX1Þð Þ

þ 1� 4xðX1Þð Þ yðX2Þ � 4zðX2ÞyðX3Þð Þ

� �� 1

A2: 4(c)
0; y; 1

4;
y ’ 1

2

B: 8(d)
1
4 ;

1
4 ; 0
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Table 1 (continued)

Glazer
tilt
system

Space group
(Wyckoff
sequence) Unit cell

Atomic
positions Polyhedral volume ratios

X1: 8(e)
x; 0; 0;
x ’ 1

4

X2: 8(f)
0; y; z;
y ’ 1

4,
z ’ 0

X3: 8(g)
x; y; 1

4;
x ’ y ’ 1

4

a0b+b+ #139
I4/mmm
(nhfcba)

a = b ’ c ’
2ap

A1: 2(a)
0,0,0

VA1

VB

¼
4zðX2Þ yðX2Þ þ 4xðX1Þð Þ

2xðX1Þ þ 2zðX2Þ � yðX2Þ � 8xðX1ÞzðX2Þ

VA2

VB

¼
4 xðX1Þ þ zðX2Þ þ yðX2ÞzðX2Þ � 1ð Þ

8xðX1ÞzðX2Þ � 2xðX1Þ þ yðX2Þ � 2zðX2Þ
� 2

VA3

VB

¼
3� 8yðX2Þ þ 4yðX2Þ2

4yðX2Þ 2xðX1Þ þ 2zðX2Þ � yðX2Þ � 8xðX1ÞzðX2Þð Þ

VA

� �
=VB ¼

3

8yðX2Þ 2xðX1Þ þ 2zðX2Þ � yðX2Þ � 8xðX1ÞzðX2Þð Þ
�1

A2: 2(b)
0; 0; 1

2

A3: 4(c)
1
2 ; 0; 0

B: 8(f)
1
4 ;

1
4 ;

1
4

X1: 8(h)
x; x; 0;
x ’ 1

4

X2: 16(n)
0; y; z;
y ’ z ’ 1

4

a�a�a� #167 R�33c
(eba)

a = b ’
21/2ap

A: 6(a)
0; 0; 1

4

VA

VB

¼
3

2 1� 3xðX1Þ þ 3xðX1Þ2
� ��1

c’ 2(3)1/2ap B: 6(b)
0; 0; 0

O: 18(e)
x; 0; 1

4;
x ’ 1

2

a�b�b�#15 I12=a1
(fe2b)

a ’ 2ap A: 4(e)
1
4 ; y; 0;
y ’ 0

VA

VB

¼
3

6zðX2Þ � 4yðX1Þ � 4xðX2Þ þ 2yðX2Þ

þ8yðX1ÞxðX2Þ � 8zðX2ÞyðX2Þ þ 1

� ��1

b ’ c ’
21/2ap

B: 4(b)
0; 1

2 ; 0
X1: 4(e)

1
4 ; y; 0;
y ’ 1

2

X2: 8(f)
x; y; z;
x ’ 1

2,
y ’ 3

4,
z ’ 1

4

a+b�b� #62 Pnma
(dc2a)

a ’ c ’
21/2ap

A: 4(c)
x; 1=4; z;
x ’ 1

2,
z ’ 0

VA

VB

¼
3

2 1� 4zðX2Þð Þ xðX2Þ � 4xðX1ÞyðX2Þð Þ�4yðX2ÞzðX1Þ þ zðX2Þð Þ
�1

a+a�a� b ’ 2ap B: 4(a)
0; 0; 0

X1: 4(c)
x; 1

4, z;
x ’ z ’ 0

X2: 8(d)
x; y; z;
x ’
z ’ 1

4,
y ’ 0

Pnma
(dc2b)

a ’ c ’
21/2ap

A: 4(c)
x; 1

4 ; z;
x ’ z ’ 1

2

VA

VB

¼
3

2 3� 4zðX2Þð Þ xðX2Þ � 4xðX1ÞyðX2Þð Þþ4yðX2Þ 1� 2zðX1Þð Þþ2zðX2Þ � 1
�1

b ’ 2ap B: 4(a)
1
2 ; 0; 0

X1: 4(c)
x; 1

4 ; z;
x ’ 0,
z ’ 1

2
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Table 1 (continued)

Glazer
tilt
system

Space group
(Wyckoff
sequence) Unit cell

Atomic
positions Polyhedral volume ratios

X2: 8(d)
x; y; z;
x ’ 1

4,
y ’ 0,
z ’ 3

4

Pbnm
(dc2a)

a ’ b ’
21/2ap

A: 4(c)
x; y; 1

4;
x ’ 0;
y ’ 1

2

VA

VB

¼
3

2 1� 4xðX2Þð Þ yðX2Þ � 4yðX1ÞzðX2Þð Þ�4xðX1ÞzðX2Þ þ xðX2Þð Þ
�1

c ’ 2ap B: 4(a)
0; 0; 0

X1: 4(c)
x; y; 1

4;
x ’ y ’ 0

X2: 8(d)
x; y; z;
x ’ y ’ 1

4,
z ’ 0

Pbnm
(dc2b)

a ’ b ’
21/2ap

A: 4(c)
x; y; 1

4;
x ’ 0;
y ’ 1

2

VA

VB

¼
3

2 3� 4xðX2Þð Þ yðX2Þ � 4yðX1ÞzðX2Þð Þ�4zðX2Þ 4xðX2Þ � 2xðX1Þ � 3ð Þþ2xðX2Þ � 1
�1

c ’ 2ap B: 4(a)
1
2 ; 0; 0

X1: 4(c)
x; y; 1

4;
x ’ 0,
y ’ 1

2

X2: 8(d)
x; y; z;
x ’ 3

4,
y ’ 1

4,
z ’ 0

a+b�c� #11 P21=m
(f2e4cb)

a ’ c ’
21/2ap

A1: 2(e)
x; 1

4 ; z;
x ’ z ’ 0

hVAi

hVBi
¼

2� xðX4Þ þ zðX4Þ þ 2xðX3Þ þ 4yðX3Þð1� 2xðX2ÞÞ þ 4zðX2ÞðyðX3Þ � yðX4ÞÞ

þ4xðX1ÞðyðX4Þ � yðX3ÞÞ þ 4xðX4ÞðyðX3Þ þ zðX3ÞÞ � 4zðX4ÞðxðX3Þ þ yðX3ÞÞ

þð4yðX4Þ � 1ÞðzðX3Þ � xðX3ÞÞ þ 8ðxðX3ÞyðX4Þ � xðX4ÞyðX3ÞÞðzðX1Þ þ zðX2ÞÞ

þ8ðyðX3ÞzðX4Þ � yðX4ÞzðX3ÞÞðxðX1Þ þ xðX2ÞÞ

0
BB@

1
CCA

xðX3Þð4zðX4Þ � 3Þ � 4zðX3ÞðyðX4Þ þ xðX4ÞÞ þ 4yðX4ÞzðX2Þð1� 2xðX3ÞÞ

�4yðX3ÞzðX2Þð1� 2xðX4ÞÞ þ 4yðX3Þð1� 2zðX4ÞÞðxðX1Þ þ xðX2ÞÞ þ xðX4Þ

þ4ð1� 2zðX1ÞÞðxðX3ÞyðX4Þ � xðX4ÞyðX3ÞÞ þ ð1� 4yðX3ÞÞð1� zðX4ÞÞ

þ8yðX4ÞzðX3ÞðxðX1Þ þ xðX2ÞÞ þ zðX3Þ � 4xðX1ÞyðX4Þ þ 4xðX2ÞyðX3Þ

0
BB@

1
CCA

b ’ 2ap A2: 2(e)
x; 1

4 ; z;
x ’ z ’ 1

2

� ’ 90� B1: 2(b)
1
2 ; 0; 0

B2: 2(c)
0; 0; 1

2

X1: 2(e)
x; 1

4 ; z;
x ’ 0,
z ’ 1

2

X2: 2(e)
x; 1

4 ; z;
x ’ 1

2,
z ’ 0

X3: 4(f)
x; y; z;
x ’ z
’ 1

4,
y ’ 0

X4: 4(f)
x; y; z;
x ’ 1

4,
y ’ 0,
z ’ 3

4



Thomas, 1998). The approach is well suited for the perovskite

structure type as the three-dimensional space of its crystal

structure can be partitioned into A- and B-site cation poly-

hedra without voids, so the equation

V ¼
XZ

i¼1

VAi
þ
XZ

j¼1

VBj ð1Þ

will always be valid (where V is the volume of the unit cell, VA

and VB are the volumes of A- and B-site cation polyhedra, and

Z is the number of formula units ABX3 in the unit cell).

Using an empirical analysis of the experimental data

Thomas demonstrated that VA/VB ratios are related to tilting

angles and since formulae for tilting angles were developed in

parallel, the polyhedral volume ratios (PVR) method could

also be easily applied to the same perovskite modifications.

The method has been shown to be quite accurate for the

prediction of phase transitions in orthorhombic (Thomas,
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Table 1 (continued)

Glazer
tilt
system

Space group
(Wyckoff
sequence) Unit cell

Atomic
positions Polyhedral volume ratios

a+a+c� #137
P42/nmc
(g2fedba)

a ’ c ’ 2ap A1: 2(a)
3
4 ;

1
4 ;

3
4

VA1

VB

¼

2

2 2yðX1Þ � 1ð Þ 1� 4xðX3Þð Þþ4yðX2Þ 1� 3zðX1Þ � 4xðX3Þð Þ

þ4zðX2Þ 1þ 4yðX1Þð Þ 4xðX3Þ � yðX2Þð Þ�zðX2Þ 1þ 4yðX1Þð Þ

þ4 4yðX2Þ � 3ð Þ yðX1ÞzðX1Þ þ 4zðX1ÞxðX3Þð Þþ9zðX1Þ

0
@

1
A

3þ 16yðX2ÞyðX1Þ � 2 3� 4xðX3Þð Þ 1þ 4yðX1Þð Þ

�8 1� 2xðX3Þð Þ zðX1Þ 3� 4yðX2Þð Þ�zðX2Þ 1þ 4yðX1Þð Þð Þ

� �

VA2

VB

¼

2

3þ 24xðX3Þ 2yðX1Þ þ 1ð Þ�4 4yðX1Þ þ 1ð Þ yðX2ÞzðX2Þ þ 3ð Þ

þ 4yðX2Þ � 3ð Þ 13zðX1Þ þ 4ð Þþ4zðX1Þ 4yðX2Þ � 3ð Þ yðX1Þ � 4xðX3Þð Þ

þzðX2Þ 1þ 4yðX1Þð Þ 15� 16xðX3Þð Þþ16yðX2Þ yðX1Þ � xðX3Þð Þ

0
@

1
A

3þ 8yðX1Þ 3� 2yðX2Þð Þ�8xðX3Þ 1þ 4yðX1Þð Þ

þ8 2xðX3Þ � 1ð Þ zðX2Þ 1þ 4yðX1Þð ÞþzðX1Þ 4yðX2Þ � 3ð Þð Þ

� �

VA3

VB

¼
1� 12yðX2Þ þ 4yðX1Þ þ 16yðX2ÞyðX1Þ

8 2xðX3Þ � 1ð Þ 4yðX2ÞzðX1Þ þ 4yðX1ÞzðX2Þ � 3zðX1Þ þ zðX2Þð Þ

þ2 4yðX1Þ þ 1ð Þ 3� 4xðX3Þð Þ�16yðX2ÞyðX1Þ � 3

� �

VA

� �
VB

¼
6

16yðX2ÞyðX1Þ � 2ð4yðX1Þ þ 1Þð3� 4xðX3ÞÞ � 8ðzðX2Þ � 3zðX1ÞÞð2xðX3Þ � 1Þ

�32ðyðX1ÞzðX2Þ þ yðX2ÞzðX1ÞÞð2xðX3Þ � 1Þ þ 3

� �� 1

A2: 2(b)
3
4 ;

1
4 ;

1
4

A3: 2(c)
1
4 ;

1
4 ; z;

z ’ 1
4

B: 8(e)
0; 0; 0

X1: 8(g)
1
4 ; y; z;
y ’ z ’ 0

X2: 8(g)
1
4 ; y; z;
y ’ z ’ 1

2

X3: 8(f)
x;�x; 1

4;
x ’ 1

2

a+a+a+ #204 Im�33
(gcba)

a = b = c ’
2ap

A1: 2(a)
0; 0; 0

VA1

VB

¼
4 zðX1Þ3þyðX1Þ3þ3zðX1Þ2yðX1Þ
� �

3yðX1Þ2þ3zðX1Þ2�4yðX1Þ3�4zðX1Þ3�3zðX1ÞyðX1Þ

VA2

VB

¼
8yðX1Þ3þ8zðX1Þ3þ24zðX1Þ2yðX1Þ � 3

6 4yðX1Þ3þ4zðX1Þ3 � 3yðX1Þ2 � 3zðX1Þ2 þ 3yðX1ÞzðX1Þ
� �� 4

3

VA

� �
VB

¼
3

8 3yðX1Þ2þ3zðX1Þ2�4yðX1Þ3�4zðX1Þ3�3zðX1ÞyðX1Þ
� ��1

A2: 6(b)
0; 1

2 ;
1
2

B: 8(c)
1
4 ;

1
4 ;

1
4

X1: 24(g)
0; y; z;
y ’ z ’ 1

4

a+b+c+ #71 Immm,
(nmlkdc-
ba)

a ’ b ’ c ’
2ap

A1: 2(a)
0; 0; 0

VA1

VB

¼ 2
zðX1Þ þ zðX2Þð Þ 2xðX3ÞyðX1Þ þ xðX2Þ 2yðX3Þ þ yðX1Þð Þð Þ

zðX1ÞyðX3Þ þ zðX2Þ yðX1Þ � yðX3Þð ÞþxðX2ÞyðX3Þ 1� 4zðX1Þð Þ

þxðX3ÞzðX2Þ 1� 4yðX1Þð Þþ yðX1Þ � zðX1Þð Þ xðX3Þ � xðX2Þð Þ

� �

VA2

VB

¼

zðX2Þ � zðX1Þð Þ 8 yðX1Þ xðX2Þ þ 2xðX3Þð ÞþyðX3Þ 1� 2xðX2Þð Þ�xðX3Þð Þ�4xðX2Þ þ 6 1� 2yðX1Þð Þð Þ

þ 1� 2yðX1Þð Þ 3� 4xðX3Þð Þ�2xðX2Þ þ 4yðX3Þ � 8xðX2ÞyðX3Þ þ 4xðX2ÞyðX1Þ

� �

4
zðX1ÞyðX3Þ þ zðX2Þ yðX1Þ � yðX3Þð ÞþxðX2ÞyðX3Þ 1� 4zðX1Þð Þ

þxðX3ÞzðX2Þ 1� 4yðX1Þð Þþ yðX1Þ � zðX1Þð Þ xðX3Þ � xðX2Þð Þ

� �

VA3

VB

¼ 2

zðX1Þ þ zðX2Þð Þ yðX1Þ 2xðX3Þ � xðX2Þ � 1ð ÞþxðX2Þ 2yðX3Þ � 1ð Þð Þ

þxðX2ÞyðX1Þ � 2xðX2ÞyðX3Þ þ xðX2Þ þ yðX1Þ � 2xðX3ÞyðX1Þ

� �

zðX1ÞyðX3Þ þ zðX2Þ yðX1Þ � yðX3Þð ÞþxðX2ÞyðX3Þ 1� 4zðX1Þð Þ

þxðX3ÞzðX2Þ 1� 4yðX1Þð Þþ yðX1Þ � zðX1Þð Þ xðX3Þ � xðX2Þð Þ

� �

VA4

VB

¼

2 zðX2Þ � zðX1Þð Þ 4xðX3Þ 2yðX1Þ � 1ð Þþ 2xðX2Þ � 1ð Þ 3� 2yðX1Þð Þ�4yðX3Þð Þð Þ

þ 3� 4yðX3Þð Þ 1� 2xðX2Þð Þ�8xðX3ÞyðX1Þ þ 4xðX2ÞyðX1Þ � 2yðX1Þ þ 4xðX3Þ

� �

4
zðX1ÞyðX3Þ þ zðX2Þ yðX1Þ � yðX3Þð ÞþxðX2ÞyðX3Þ 1� 4zðX1Þð Þ

þxðX3ÞzðX2Þ 1� 4yðX1Þð Þþ yðX1Þ � zðX1Þð Þ xðX3Þ � xðX2Þð Þ

� �

VA

� �
VB

¼
3

8
zðX1ÞyðX3Þ þ zðX2Þ yðX1Þ � yðX3Þð ÞþxðX2ÞyðX3Þ 1� 4zðX1Þð Þ

þxðX3ÞzðX2Þ 1� 4yðX1Þð Þþ yðX1Þ � zðX1Þð Þ xðX3Þ � xðX2Þð Þ

� �� 1

A2: 2(b)
0; 1

2 ;
1
2

A3: 2(c)
1
2 ;

1
2 ; 0

A4: 2(d)
1
2 ; 0; 1

2

B: 8(k)
1
4 ;

1
4 ;

1
4

X1: 8(l)
0; y; z;
y ’ z ’ 1

4

X2: 8(m)
x; 0; z;
x ’ z ’ 1

4

X3: 8(n)
x; y; 0;
x ’ y ’ 1

4



1998; Magyari-K̈ope et al., 2001, 2002a,b) and rhombohedral

(Thomas, 1996; Zhao et al., 2004) perovskites, but even after

that the approach has not been widely adopted as ‘no general

recipe for the determination of the independent variables, V

and VA/VB, is provided’ (Magyari-Köpe et al., 2002a).

Alternatively, VA/VB ratios can be calculated numerically

using, for example, the popular program IVTON (Balic Zunic

& Vickovic, 1996). However, owing to significant variation in

the degree of distortion of perovskites, great care is needed

when adjusting the limits for searching the coordinating atoms,

which makes it difficult to process the ICSD data in an auto-

matic mode. In addition, we provide the evidence that

numerical calculations according to the algorithms designed to

construct only convex polyhedra not only do not always hold

(1) true, but in some cases even lead to qualitatively

misleading results when applied to perovskites.

1.4. Perovskites under non-ambient conditions

Today the relative stability of the different modifications of

the perovskite structure type can be estimated with a wide

range of methods, from simple geometric considerations based

on the concept of ionic radii (Goldschmidt, 1926) and bond-

valence approach (Brown & Altermatt, 1985), as imple-

mented, for example, in the SPUDS software (Lufaso &

Woodward, 2001), to first-principles calculations. However,

most of these methods rely on tabulated values of radii, bond-

valence parameters, interatomic potentials etc., which are well

established for room temperature but are often unknown for

non-ambient conditions (high pressure, low/high temperature

etc.). First-principle studies are also too non-trivial and time

consuming to be used in routine structural studies.

It was already proposed that the relative compressibilities

of A- and B-site polyhedra determine whether a perovskite

structure will become more or less distorted under high

pressure (Andrault & Poirier, 1991), but the number of

analysed structures was too small to draw quantitative

conclusions.

The above-mentioned considerations motivated us to

explore and modify the PVR method. Notice that we do not

use the term global parameterization method (GPM) as

introduced by Thomas (Thomas, 1998), because we take a

different approach and instead of relating VA/VB ratios to

tilting angles, we express ratios directly in terms of atomic

coordinates. We overcame the shortcomings of the original

approach, i.e.

(i) we do not employ any empirical coefficients and present

the exact expressions of calculation of PVRs, and

(ii) PVRs are calculated directly from atomic coordinates

and therefore no intermediate calculations of distances or

angles are required.

Since PVRs are calculated directly from experimental struc-

tural data under any conditions and do not depend on any

tabulated parameters, they can be used for a unified descrip-

tion of crystal structure evolution as a function of chemical

composition, temperature, pressure etc. Finally, we estimate

the critical values at which phase transitions will occur in such

parametric studies.

2. Analysis details and conventions

The formulae of the VA/VB ratios in ABX3 disordered

perovskites in terms of atomic coordinates were derived using

linear algebra in combination with group–subgroup relations

and are presented in Table 1. While in general we followed the

unit-cell descriptions and space-group settings given by

Woodward in Table 5 (Woodward, 1997), for several space

groups we present more than one set of formulae. For

example, we found that crystal structures with the space group

Imma are more often published with the (ge2b) Wyckoff

sequence rather than with (ge2a) as used by Woodward, so we

present formulae for both. Similarly, in addition to the Pnma

space group with Wyckoff sequence (dc2b), we also consid-

ered three other widely used settings: Pnma (dc2a), Pbnm

(dc2a) and Pbnm (dc2b). Other settings such as Pcmn, Pmcn,

Pmnb etc. were not considered as altogether they cover less

than 3% of the total number of ABX3 perovskites with space

group 62 present in the ICSD.

For all the space groups we assumed A- and B-site poly-

hedra to have 12 and 6 vertices, respectively, in order to

preserve the condition (1). We are conscious that an unam-

biguous definition of coordination number is one of the

fundamental problems of inorganic solid-state chemistry and

many would argue that in the case of highly distorted

perovskites the coordination number of the A site is 10, 9, 8 or

even 4 + 2. However, in order to place all perovskites on the

same scale and in our effort to devise a universal reference for

this family of compounds, it is essential to consider the

geometry of the crystal structure from the same viewpoint. As

shown in the following text, the self-consistency of the results

supports our approach.

For space groups with multiple A sites we present the

formulae both for PVRs of individual ith polyhedra VAi/VB

and for the average A-site volume hVAi/VB. We present the

formula for the ratio of the average polyhedral volumes hVAi/

hVBi only for the space group P21/m having two A sites and

two B sites as it is arguable how the volumes of individual B-

site polyhedra should be handled in the denominators of

PVRs.

3. Results and discussion

3.1. PVR distribution statistics

The statistics of PVR distribution are presented in Fig. 3,

revealing the following features:

(i) Most space groups are characterized by PVR distribu-

tion with well defined maxima positions and boundaries that

allowed us to estimate the critical values of PVRs at which the

perovskite structure undergoes a phase transition from one

space group to another. We estimate the critical values of

PVRs for the most common transitions Pnma$ I4/mcm and

Pnma $ R�33c to be � 4.85 with the possible intermediate
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space group Imma which is stable in the very narrow range of

VA/VB ’ 4.8–4.9.

(ii) The most highly distorted perovskites belong to the

space group Pnma reaching PVRs as low as 3.8, much lower

than any known monoclinic simple perovskites ABX3. This is

in agreement with the fact that the pressure-induced transition

of a perovskite-type structure to the so-called ‘post-perov-

skite’ CaIrO3-type modification occurs directly from Pnma

without any intermediate perovskite phases of lower

symmetry (Murakami et al., 2004).
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Figure 3
Top: Distribution of PVRs for ABX3 perovskites. The number in the upper-left corner of each pane indicates the total number of structures in the
histogram. The binning interval is 0.02. The shading indicates structures with a single A and B site (see x3.3 for discussion). Bottom: Deviation of the sum
of all polyhedra volumes calculated with IVTON from the total unit-cell volume as a function PVR. Squares, circles, triangles, diamonds and stars
indicate examples of structures with P4/mbm, Cmcm, Pnma, Im3 and P21/m space groups, respectively.



(iii) The number of ABX3 perovskite structures with a

single A and B site present in the ICSD (shaded panes in Fig.

3) is significantly higher than that of structures with multiple A

or B sites. This observation, as well as the origin of an

anomalously high number of perovskites having the space

group Im3 with low PVRs of � 3.85–4.2, are discussed in x3.3.

The structural data used in the analysis were not checked

for reliability using, for example, R factors. Fig. 3 may there-

fore include ICSD entries with incorrectly assigned space

groups. However, we believe that the number of analysed

structures is large enough for statistics of PVR distribution not

to be significantly affected by those rare instances.

3.2. Exact expressions versus numerical calculations

Since in the cubic perovskite structure ideal cuboctahedra

coordinating A sites share square faces, any deformation

resulting in their non-planarity will split the faces to triangles.

After that only one of two cuboctahedra that shared an

originally square face can stay convex and another will

become concave. Unfortunately, most of the computer

programs currently used for the calculation of polyhedral

volumes in crystal structures, including IVTON (Balic Zunic &

Vickovic, 1996), in such a situation will treat both cubocta-

hedra as convex, counting the same space twice. As a result,

the condition (1) will no longer hold true and VA/VB ratios will

be overestimated. When comparing the results of our calcu-

lations using the formulae from Table 1 with those performed

using IVTON we encountered deviations of the sum of all

polyhedra volumes from the total unit-cell volume V up to 4%.

In some cases such deviations result even in a qualitatively

different picture. For example, for the CsDyBr3 structure

(ICSD #300285, space group P4/mbm, Z = 2) according to

IVTON VIVTON
A = 164.68 Å3 and VIVTON

B = 32.73 Å3, which

results in Z(VIVTON
A + VIVTON

B ) = 394.82 Å3, while the cell

volume is 386.85 Å3. Moreover, while the correct VA/VB

equals 4.91, the values obtained with IVTON produce a

misleading result VIVTON
A =VIVTON

B = 5.03 that is higher than

that for the undistorted cubic perovskite and is typical for

‘hexagonal perovskites’ with face-sharing octahedra.

This kind of problem does not affect the space groups

I4/mcm, Imma, R�33c, I2/m and I2/a, in which the planarity of

the square faces of the cuboctahedra is preserved during

distortion. For all other space groups, the difference between

the sum of all the polyhedra calculated with IVTON and the

total unit-cell volume generally increases with increasing

structure distortion, as illustrated in Fig. 3.

3.3. ‘Disordered by symmetry’ versus ‘multiple cation site’
perovskites

As can be seen in Fig. 3 the number of structures with a

single A and B site is significantly higher than that of struc-

tures with multiple crystallographically inequivalent A and/or

B sites. The analysis of the geometry of perovskites provides

the explanation.

As follows from the formulae in Table 1 for structures with

multiple cation positions (non-shaded panes in Fig. 3), poly-

hedral volumes for individual A-site cations have a different

dependence on atomic coordinates. We illustrate this using the

example of the space group Im3 which has only two atomic

coordinate variables, y(X1) and z(X1), so the effect can be

easily visualized. The polyhedral volumes normalized by unit-

cell volume for two crystallographically inequivalent A sites,

2a(0,0,0) and 6b(0,1/2,1/2), as functions of y(X1) and z(X1),

are presented in Fig. 4(a). The volumes VA(2a) and VA(6b)

will be equal only for certain combinations of y(X1) and

z(X1), presented in Fig. 4 by a solid line. For all other

combinations of y(X1) and z(X1) VA(2a) will be either

smaller or larger than VA(6b) (Fig. 4b). That makes phase

transitions to this structure thus having, in general, energeti-

cally different coordinations of A(2a) and A(6b), to be unfa-

vourable for simple ABX3

compounds and additional

factors are required to

stabilize the structure.

Experimental points in

Fig. 4 (bottom) corre-

spond to the well known

family of Ca3CuTi4O12

type which is stabilized by

the simultaneous presence

of the Ca2+ cation in the

larger (2a) site and of Cu2+

in the much smaller (6b)

site which is highly

distorted by the Jahn–

Teller effect (circles) and

tungsten bronzes AxWO3

(A = Li, Na) stabilized by

electronic effects

(squares). A similar

difference between the
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Figure 4
Volumes of A-site polyhedra for (2a) and (6b) Wyckoff positions normalized to the unit cell (a) and their ratio
VA(2a)/VA(6b) (b) as a function of y(X1) and z(X1) coordinates for the Im3 space group. Points represent
experimental data from the ICSD. The VA(2a) = VA(6b) curve (solid line in the bottom graph) is calculated by
zðX1Þ ¼

�
2yðX1Þþ �64yðX1Þ3 � 12yðX1Þ2 þ 8yðX1Þ þ 2

� 	1=2

=f4½4yðX1Þ þ 1�g for y(X1) < z(X1) and

zðX1Þ ¼
�
� 8yðX1Þ2 þ 2yðX1Þþ 64yðX1Þ4 � 32yðX1Þ3 � 12yðX1Þ2 þ 2

� 	1=2

=4 for y(X1) > z(X1).



functional dependence of inequivalent polyhedral volumes

VAi on atomic coordinates is observed for other space groups

with multiple A sites and the higher number of inequivalent A

sites, the more unlikely the perovskite structure will adopt that

space group. This is consistent with the fact that ABX3

perovskites with the space group Immm having four inequi-

valent A sites were not observed.

We notice that the preference of perovskites to adopt space

groups having a single A and B site over those with multiple A

and/or B sites is just a special case of the 5th Pauling’s rule,

also known as The Rule of Parsimony, according to which ‘the

number of essentially different kinds of constituents in a

crystal tends to be small’ (Pauling, 1929). Appealing to

something like Pauling’s rules may sound naive, but in fact the

ab initio studies of CaSiO3 perovskite energetics in the pres-

sure range 0–150 GPa resulted in the conclusion that space

groups with multiple A sites (P42/nmc, I4/mmm, Im3) are less

stable than counterparts with single A and B sites such as

Pnma or I4/mcm (Caracas et al., 2005; Jung & Oganov, 2005).

Finally, we would like to emphasize the obvious: it is the

structural instabilities that drive changes in symmetry, not vice

versa. Intuitive expectations that the symmetry should change

gradually from the highest cubic to the lowest triclinic may

result in the misinterpretation of phase diagrams. This was the

case for the PbZrO3–PbTiO3 system in which the monoclinic

phase, intermediate to the tetragonal and rhombohedral

phases, was overlooked for decades (Noheda et al., 1999).

Another example is the recent report on the electron

diffraction study of the notorious CaxSr1� xTiO3 system,

where the sequence of phase transitions as a function of

compositions is proposed to be Pm3m! I4/mcm! C2/m!

P21/m ! Pnma (Woodward et al., 2006). The statistics of

polyhedral volume ratios presented in Fig. 3 suggests that this

is not an impossible scenario.

4. Conclusions

The simple way of quantifying the degree of perovskite

structure distortion with polyhedral volume ratios we have

presented here allows streamlining the analysis of large

amounts of published or new experimental data as it can be

employed with software as simple as a spreadsheet (http://

www.abx3.org, 2006). The analysis of PVR distribution for

ABX3 perovskites using crystallographic data accumulated in

the Inorganic Crystal Structure Database has revealed the

fields of stability of the most common space groups that can be

useful for optimization parametric studies of perovskites. The

lower limit of stability of the perovskite structure before it

transforms to a post-perovskite CaIrO3-type modification is

estimated to correspond to VA/VB ’ 3.8.

We thank reviewers for useful comments and suggestions

and Dr A. Studer for enlightening discussions.
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